135 (Evan Chen). Let D be a point on side $B C$ of $\triangle A B C$. Let I_{1} and I_{2} be the incenters of $\triangle A B D$ and $A C D$, respectively. Let K be the intersection of lines $B I_{2}$ and $C I_{1}$. Prove that K lies on $A D$ if and only if $A D$ bisects angle A.

Solution (Emma Yang, unedited). We can use barycentric coordinates wrt reference triangle $A B C$. Let $A D=d, C D=m, B D=n$.

Let ray $D I_{2}$ intersect $\overline{A C}$ at L. By the angle bisector theorem, L splits the side $A C$ into an $A D: C D$ ratio, so its barycentric coordinates are ($m: 0$: $d)$. Analogously, the barycentric coordinates for D are ($0: m: n$).

Let $I_{2}=(a: b: s)$ (it is an incenter). Because D, I_{2}, L are collinear, we can write the following determinant:

$$
\left|\begin{array}{ccc}
m & 0 & d \\
0 & m & n \\
a & b & s
\end{array}\right|=0
$$

If we expand out the determinant and solve for s, we get $s=\frac{a d+b n}{m}$. We therefore have:

$$
I_{2}=\left(a: b: \frac{a d+b n}{m}\right)=(a m: b m: a d+b n)
$$

Similarly, we derive:

$$
I_{1}=(a n: a d+c m: c n)
$$

Since K is the intersection of $B I_{2}, C I_{1}$, it must follow the equations of both lines. We can find the coordinates for K :

$$
K=(a m n: m(a d+c m): n(a d+b n)
$$

However, we also observe that K is on line $A D$, so we have (due to collinearity):

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & m & n \\
a m n & m(a d+c m) & n(a d+b n)
\end{array}\right|=0
$$

This means that:

$$
\frac{m}{n}=\frac{m(a d+c m)}{n(a d+b n)}
$$

After cross multiplying and simplifying, we obtain $c m=b n$, so after some rearrangement $m: n=b: c$. Using the Angle Bisector Theorem, we see that D indeed is the foot of the angle bisector

Now, we show that, if $A D$ is the angle bisector, then K lies on $A D$.
Using our previous definitions, we still have $K=(a m n: m(a d+c m)$: $n(a d+b n))$).

Now, we find that the equation of $A D$ is:

$$
\left|\begin{array}{ccc}
x & y & z \\
1 & 0 & 0 \\
0 & m & n
\end{array}\right|=0
$$

Expanding the given determinant, we have the line equation $-n y+m z=$ 0

Furthermore, using the Angle Bisector Theorem, we have $\frac{B D}{D C}=\frac{A B}{A C}$, so we derive:

$$
\frac{n}{m}=\frac{c}{b} \Rightarrow b n=c m
$$

If we plug in the corresponding y, z values in K, we have:
$-n(m(a d+c m))+m(n(a d+b n))$
$=-m n(a d+c m)+m n(a d+b n)$
$=m n(-a d-c m+a d+b n)$
Noting that the $-a d-c m+a d+b n=0$:
$m n(-a d+c m+a d+b n)=0$, so K lies on $A D$, as desired
Having proven both directions, we are done

69 (IMO 2012). Given triangle $A B C$ the point J is the center of the excircle opposite the vertex A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L, respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.

Solution (Emma Yang, Editor: Eric, Image: An). We will present a barycentric coordinates approach.

Using the reference triangle $\triangle A B C$, we define $a=B C, b=A C, c=A B$, and $s=\frac{a+b+c}{2}$. Noting that the sum of the barycentric coordinates is $J=$ $(-a: b: c)$ (it is the A-excenter) $M=(0: s-b: s-c)$, and $K=(-(s-c): s: 0)$, we can write the coordinates of G :

From the problem statement, G is the intersection of segments $C J$ and $K M$, so it satisfies the equations of both lines. Since G is on $C J$, let $G=(-a, b, t)$. From the diagram, we can see that G, M, K are collinear, so using the formula derived previously:

$$
0=\left|\begin{array}{ccc}
-a & b & t \\
0 & s-b & s-c \\
c-s & s & 0
\end{array}\right|
$$

If we expand the determinant, we have:
$0=-a(-s(s-c))-(s-c)(b(s-c)-t(s-b))$. Solving the linear equation for t gives $t=\frac{b(s-c)-a s}{s-b}$
We obtain the following:

$$
G=\left(-a: b: \frac{-a s+b(s-c)}{s-b}\right)
$$

Because T lies on $A G$ but also $B C$, it follows that

$$
T=\left(0: b: \frac{-a s+s-c}{s-b}\right)
$$

Multiplying by $(s-b)$, we can simplify this rather complex expression into:

$$
T=(0: b(s-b):-a s+s-c)
$$

Noticing that $b(s-b)+b(s-c)-a s+0=-a(s-b)$, we can change these coordinates s.t. they add to 1 to get $T=\left(0, \frac{b}{a}, 1-\frac{b}{a}\right)$.

Using the displacement vector $\left(0, \frac{s}{a}, \frac{-s}{a}\right)$, we can use the distance formula to calculate MT:

$$
|M T|^{2}=-a^{2} \cdot \frac{s}{a} \cdot \frac{-s}{a}-b^{2} \cdot \frac{-s}{a} \cdot 0-c^{2} \cdot 0 \cdot \frac{s}{a}
$$

Simplifying, we have:
$|M T|^{2}=s^{2}$, so $M T=s$
We can do similarly for $M S$ to obtain $M S=s$ as well, so $M T=M S$, as desired

Comment. just made some minor latex changes

98 (IMO 2014). Points P and Q lie on side $B C$ of acute-angled $\triangle A B C$ so that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Points M and N lie on lines $A P$ and $A Q$, respectively, such that P is the midpoint of $A M$, and Q is the midpoint of $A N$. Prove that lines $B M$ and $C N$ intersect on the circumcircle of $\triangle A B C$.

Solution (Emma Yang, Kosta, Image: An). We denote the reference triangle's side lengths as a, b, c for the sides facing $\angle A, \angle B, \angle C$, respectively.
By AA similarity, $\triangle P B A \sim \triangle A B C$. Writing out the corresponding side ratios, we have:
$\frac{P B}{c}=\frac{c}{a}$
If we multiply c on both sides of this ratio, we derive that $P B=\frac{c^{2}}{a}$. Because we know the coordinates of $B=(0: 1: 0)$ and P lies on the line $x=0$, we find that the barycentric coordinates for P are $\left(0: 1-\frac{c^{2}}{a^{2}}: \frac{c^{2}}{a^{2}}\right)$
To find the coordinates for M, we note that $\triangle M A B$ and $\triangle P A B$ share a height, but since $|A M|=2|A P|, \frac{[M A B]}{[P A B]}=2$. Similarly, $\frac{[M C A]}{[B C A]}=2$.
Because $\triangle M B P$ and $\triangle A B P$ share a height and their bases are the same length $(M P=A P)$, their areas are the same. Similarly, $[A P C]=[M P C]$. We therefore have $[M B C]=[M B P]+[M P C]=[A B C]$, but this area is negative.
The barycentric coordinates of M are therefore $\left(-1: 2\left(1-\frac{c^{2}}{a^{2}}\right): \frac{2 c^{2}}{a^{2}}\right)$. We can do similarly for N to find that $N=\left(-1: \frac{2 b^{2}}{a^{2}}: 2\left(1-\frac{c^{2}}{a^{2}}\right)\right)$.

Now that we've found the coordinates of B, M, C, N, we can find the equations of lines BM and CN.
$B M: z=-\frac{2 c^{2} x}{a^{2}}$
$C N: y=-\frac{2 b^{2} x}{a^{2}}$, after some rearranging of terms.
Thus $\overline{B M} \cap \overline{C N}$, which fulfills the equations of both terms, has the unhomogenized coordinates ($1:-\frac{2 b^{2}}{a^{2}}:-\frac{2 c^{2}}{a^{2}}$). We can easily check this with the equation of a circumcircle ($a^{2} y z+b^{2} x z+c^{2} x y=0$):
$a^{2}\left(-\frac{2 b^{2}}{a^{2}}\right)\left(-\frac{2 c^{2}}{a^{2}}\right)+b^{2}\left(-\frac{2 c^{2}}{a^{2}}\right)+c^{2}\left(-\frac{2 b^{2}}{a^{2}}\right)=\frac{4 b^{2} c^{2}}{a^{2}}-\frac{2 b^{2} c^{2}}{a^{2}}-\frac{2 b^{2} c^{2}}{a^{2}}=0$

Solution. (Jaemin, unedited)
Let us draw a parallelogram $B C B^{\prime} C^{\prime}$ such that A is the intersection of diagonals $C^{\prime} C$ and $B^{\prime} B$.

Claim: $\triangle B C C^{\prime}$ is similar to $\triangle B A M$
Proof: First of all, we know that $\triangle A B C$ is similar to $\triangle P B A$. Now point C^{\prime} is basically the reflection of C over A while point M is the reflection of A over P (or we can see this by $S A S$ similarity as we still preserve the ratio of sides if we multiply a corresponding side of both triangles by a common ratio)

Similarly, we can derive that $\triangle C B B^{\prime}$ is similar to $\triangle C A N$.
Now, if we wish to prove that the intersection of $C N$ and $B M$ lies on the circumcircle of $\triangle A B C$ (let's denote this point as D), then we need to prove that $\angle A B M+\angle A C N=180^{\circ}$ as that would prove that $A B D C$ is a cyclic quadrilateral.
Now this is equivalent to proving that $\angle C^{\prime} B C+\angle B C B^{\prime}=180^{\circ}$. This follows directly from our construction as $B C B^{\prime} C^{\prime}$ is a parallelogram and adjacent angles in a parallelogram add up to 180°.
(currently diagramless)

