Let D be a point on side BC of $\triangle ABC$. Let I_1 and I_2 be the incenters of $\triangle ABD$ and ACD, respectively. Let K be the intersection of lines BI_2 and CI_1. Prove that K lies on AD if and only if AD bisects angle A.

Solution (Emma Yang, unedited). We can use barycentric coordinates wrt reference triangle ABC. Let $AD = d, CD = m, BD = n$.

Let ray DI_2 intersect \overline{AC} at L. By the angle bisector theorem, L splits the side AC into an $AD : CD$ ratio, so its barycentric coordinates are $(m : 0 : d)$. Analogously, the barycentric coordinates for D are $(0 : m : n)$.

Let $I_2 = (a : b : s)$ (it is an incenter). Because D, I_2, L are collinear, we can write the following determinant:

$$
\begin{vmatrix}
 m & 0 & d \\
 0 & m & n \\
 a & b & s \\
\end{vmatrix} = 0
$$

If we expand out the determinant and solve for s, we get $s = \frac{ad + bn}{m}$. We therefore have:

$$
I_2 = (a : b : \frac{ad + bn}{m}) = (am : bm : ad + bn)
$$

Similarly, we derive:

$$
I_1 = (an : ad + cm : cn)
$$

Since K is the intersection of BI_2, CI_1, it must follow the equations of both lines. We can find the coordinates for K:
$K = (amn : m(ad + cm) : n(ad + bn))$

However, we also observe that K is on line AD, so we have (due to collinearity):

$$
\begin{vmatrix}
1 & 0 & 0 \\
0 & m & n \\
amn & m(ad + cm) & n(ad + bn)
\end{vmatrix} = 0
$$

This means that:

$$\frac{m}{n} = \frac{m(ad + cm)}{n(ad + bn)}$$

After cross multiplying and simplifying, we obtain $cm = bn$, so after some rearrangement $m : n = b : c$. Using the Angle Bisector Theorem, we see that D indeed is the foot of the angle bisector \square

Now, we show that, if AD is the angle bisector, then K lies on AD.

Using our previous definitions, we still have $K = (amn : m(ad + cm) : n(ad + bn))$.

Now, we find that the equation of AD is:

$$
\begin{vmatrix}
x & y & z \\
1 & 0 & 0 \\
0 & m & n
\end{vmatrix} = 0
$$

Expanding the given determinant, we have the line equation $-ny + mz = 0$

Furthermore, using the Angle Bisector Theorem, we have $\frac{BD}{DC} = \frac{AB}{AC}$, so we derive:

$$\frac{n}{m} = \frac{c}{b} \Rightarrow bn = cm$$

If we plug in the corresponding y, z values in K, we have:

$$-n(m(ad + cm)) + m(n(ad + bn))$$
$$= -mn(ad + cm) + mn(ad + bn)$$
$$= mn(-ad - cm + ad + bn)$$

Noting that the $-ad - cm + ad + bn = 0$:

$$mn(-ad + cm + ad + bn) = 0$$

so K lies on AD, as desired \square

Having proven both directions, we are done \blacksquare
69 (IMO 2012). Given triangle ABC the point J is the center of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let S be the point of intersection of the lines AF and BC, and let T be the point of intersection of the lines AG and BC. Prove that M is the midpoint of ST.

Solution (Emma Yang, Editor: Eric, Image: An). We will present a barycentric coordinates approach.

Using the reference triangle $\triangle ABC$, we define $a = BC$, $b = AC, c = AB$, and $s = \frac{a+b+c}{2}$. Noting that the sum of the barycentric coordinates is $J = \left(\frac{a}{a:b:c}\right)$ (it is the A-excenter) $M = \left(0: \frac{s-a}{s-b}: \frac{s-a}{s-c}\right)$, and $K = \left(\frac{s-b}{s-c}: s: 0\right)$, we can write the coordinates of G:

From the problem statement, G is the intersection of segments CJ and KM, so it satisfies the equations of both lines. Since G is on CJ, let $G = \left(-a:b:\frac{as+b+e}{s-b}\right)$. From the diagram, we can see that G, M, K are collinear, so using the formula derived previously:

$$0 = \begin{vmatrix} -a & b & t \\ 0 & s-b & s-c \\ c-s & s & 0 \end{vmatrix}$$

If we expand the determinant, we have:

$$0 = -a(-s(s-c)) - (s-c)(b(s-c) - t(s-b)).$$

Solving the linear equation for t gives $t = \frac{b(s-c) - as}{s-b}$.

We obtain the following:

$$G = \left(-a:b:\frac{-as+b(s-c)}{s-b}\right).$$

Because T lies on AG but also BC, it follows that

$$T = \left(0:b:\frac{-as+s-c}{s-b}\right).$$

Multiplying by $(s-b)$, we can simplify this rather complex expression into:

$$T = \left(0:b(s-b): -as+s-c\right).$$

Noticing that $b(s-b) + b(s-c) - as + 0 = -a(s-b)$, we can change these coordinates s.t. they add to 1 to get $T = \left(0, \frac{b}{a}, 1 - \frac{b}{a}\right)$.
Using the displacement vector \((0, \frac{a}{s}, \frac{b}{s})\), we can use the distance formula to calculate \(MT\):

\[
|MT|^2 = -\frac{a^2 \cdot \frac{s}{a}}{b^2 \cdot \frac{s}{a} + c^2 \cdot \frac{s}{a}}
\]

Simplifying, we have:

\[|MT|^2 = s^2, \text{ so } MT = s\]

We can do similarly for \(MS\) to obtain \(MS = s\) as well, so \(MT = MS\), as desired.

Comment. just made some minor latex changes
98 (IMO 2014). Points P and Q lie on side BC of acute-angled $\triangle ABC$ so that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Points M and N lie on lines AP and AQ, respectively, such that P is the midpoint of AM, and Q is the midpoint of AN. Prove that lines BM and CN intersect on the circumcircle of $\triangle ABC$.

Solution (Emma Yang, Kosta, Image: An). We denote the reference triangle's side lengths as a, b, c for the sides facing $\angle A$, $\angle B$, $\angle C$, respectively. By AA similarity, $\triangle PBA \sim \triangle ABC$. Writing out the corresponding side ratios, we have:

$$\frac{PB}{c} = \frac{c}{a}$$

If we multiply c on both sides of this ratio, we derive that $PB = \frac{c^2}{a}$. Because we know the coordinates of $B = (0 : 1 : 0)$ and P lies on the line $x = 0$, we find that the barycentric coordinates for P are $(0 : 1 - \frac{c^2}{a^2} : \frac{c^2}{a^2})$.

To find the coordinates for M, we note that $\triangle MAB$ and $\triangle PAB$ share a height, but since $|AM| = 2|AP|$, $\frac{[MAB]}{[PAB]} = 2$. Similarly, $\frac{[MCB]}{[BCA]} = 2$. Because $\triangle MBP$ and $\triangle ABP$ share a height and their bases are the same length ($MP = AP$), their areas are the same. Similarly, $[APC] = [MPC]$. We therefore have $[MBC] = [MBP] + [MPC] = [ABC]$, but this area is negative.

The barycentric coordinates of M are therefore $(-1 : 2(1 - \frac{c^2}{a^2}) : \frac{2c^2}{a^2})$. We can do similarly for N to find that $N = (-1 : \frac{2b^2}{a^2} : 2(1 - \frac{c^2}{a^2}))$.
Now that we’ve found the coordinates of B, M, C, N, we can find the equations of lines BM and CN.

$BM : z = -\frac{2c^2}{a^2}x$

$CN : y = -\frac{2b^2}{a^2}x$, after some rearranging of terms.

Thus $BM \cap CN$, which fulfills the equations of both terms, has the unhomogenized coordinates $(1 : -\frac{2b^2}{a^2} : -\frac{2c^2}{a^2})$. We can easily check this with the equation of a circumcircle ($a^2 yz + b^2 xz + c^2 xy = 0$):

$$a^2(-\frac{2b^2}{a^2})(-\frac{2c^2}{a^2}) + b^2(-\frac{2c^2}{a^2}) + c^2(-\frac{2b^2}{a^2}) = \frac{4b^2c^2}{a^2} - \frac{2b^2c^2}{a^2} - \frac{2b^2c^2}{a^2} = 0$$

Solution. (Jaemin, unedited)

Let us draw a parallelogram $BCB'C'$ such that A is the intersection of diagonals $C'C$ and $B'B$.

Claim: $\triangle BCC'$ is similar to $\triangle BAM$

Proof: First of all, we know that $\triangle ABC$ is similar to $\triangle PBA$. Now point C' is basically the reflection of C over A while point M is the reflection of A over P (or we can see this by SAS similarity as we still preserve the ratio of sides if we multiply a corresponding side of both triangles by a common ratio).

Similarly, we can derive that $\triangle CBB'$ is similar to $\triangle CAN$.

Now, if we wish to prove that the intersection of CN and BM lies on the circumcircle of $\triangle ABC$ (let’s denote this point as D), then we need to prove that $\angle ABM + \angle ACN = 180^\circ$ as that would prove that $ABDC$ is a cyclic quadrilateral.

Now this is equivalent to proving that $\angle C'BC + \angle BCB' = 180^\circ$. This follows directly from our construction as $BCB'C'$ is a parallelogram and adjacent angles in a parallelogram add up to 180°. ■

(currently diagramless)